y^2-16y+40=0

Simple and best practice solution for y^2-16y+40=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for y^2-16y+40=0 equation:



y^2-16y+40=0
a = 1; b = -16; c = +40;
Δ = b2-4ac
Δ = -162-4·1·40
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{6}}{2*1}=\frac{16-4\sqrt{6}}{2} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{6}}{2*1}=\frac{16+4\sqrt{6}}{2} $

See similar equations:

| X^2+3x-7x-21=0 | | -8(8x-6)=-8x | | n+n^2=132 | | 3(x-5)-1=2x-15 | | 2(3-2w)=-2(w+5) | | 2(w-3)=3.4(w1.2) | | 8m=-136 | | 5=10.v | | -3P=90q | | 3(x-5)-1=2x-16 | | -3(y-2)=2y+41 | | 3(3x+3)=7x-8 | | 0.14(y-5)+0.10y=0.02y-1.8 | | 5x/2=x+4 | | 3x+33/7+x+27/6=11 | | 4(2y-3)+2y=-62 | | 6(x-6)=16-x | | w^2-6w-63=0 | | |7x+7|=77 | | 3a-(6a+8)a=6 | | 4w+11=7w-19 | | H(30)=0.10x+8.25 | | -4(x-9)=-2x+48 | | X+2/2+x+2/5=5 | | (x^2+x)/x=0 | | 12x^2+4x+5=0 | | 7(a-1)=-27+3a | | 2(3m-4)=-32 | | 26=v+18 | | 1/2n=31/2 | | 7(x-3)=-8(x+2)46 | | 9•4p+2+8=35 |

Equations solver categories